인공지능 학습용 데이터가 만드는 '데이터 선순환 생태계'

정부가 2017년부터 쌓아온 인공지능(AI) 학습용 데이터 170종, 4억 8000만건을 '인공지능 허브'를 통해 민간에 개방한다.

인공지능 허브를 통해 개방되는 AI 학습용 데이터는 비용과 인력 확보 등의 문제로 데이터를 직접 구축하기 어려운 중소기업 및 스타트업, 그리고 대기업도 자체 확보가 어려운 대규모 데이터를 제공하여 국내 AI 산업계의 가장 큰 걸림돌이었던 '데이터 갈증'에 큰 역할을 할 것으로 내다보고 있다.

인공지능 학습용 데이터 품질관리 가이드라인 1.0 (사진=과학기술정보통신부)

이번에 공개된 데이터는 기획 단계부터 전문가, 민간 기업은 물론 서울대학교, 한국과학기술원 등 주요 대학과 서울대학교병원, 아산병원 등 병원을 포함한 총 621개 기업·기관이 대거 참여했다. 중심이 된 것은 한국어 음성 데이터, 국내 도로주행 영상 데이터, 주요 암질환 영상 데이터 등 민간에서 대규모로 구축하기 어렵고 구축 시 파급효과가 큰 데이터다.

이와 더불어 데이터 수집, 가공 등 구축 과정에서 국민 누구나 참여할 수 있는 크라우드소싱 방식을 도입해 경력단절 여성, 취업 준비 청년, 퇴직자 등을 포함한 약 4만여 명의 국민 참여를 이끌어 냈다는 점도 주목되고 있다. 이렇게 모인 AI 학습용 데이터는 네이버, LG, 삼성전자, KT, 현대차 등 대기업을 비롯해 스타트업, 대학, 연구기관 등 20여 개 기업/기관이 참여해 활용성 검토를 진행했다.

최근까지 국내 관련 기업들은 그간 인공지능 개발에 필요한 데이터를 확보하기 위해 해외 오픈 데이터에 많이 의존해왔었다. 그러나 한국어, 도로환경 등 국내 실정을 반영하지 못한 해외 데이터는 국내 서비스 개발에 활용 하는데 한계가 있었다.

하지만 인공지능 허브를 통해 개방되는 인공지능 학습용 데이터는 스타트업 등 기업들이 비용과 인력 확보 등의 문제로 직접 구축하거나 자체적으로 확보하기 어려운 대규모 데이터를 제공한다는 점에서 그동안 국내 인공지능 산업계에서 가장 큰 걸림돌로 지적된 ‘데이터 갈증’을 해소하는데 기여할 것으로 전망된다.

체감형 인공지능 서비스 개발 가속화 될 듯

인공지능 허브를 통해 개방된 학습용 데이터는 지역별 방언을 포함한 한국어, 국내 주요 도로와 국내 환자 의료 영상 데이터 등 ‘한국형 인공지능 학습용 데이터’가 대폭 확충되어, 국내 환경에 더욱 적합하고 국민이 체감할 수 있는 인공지능 서비스 개발을 가속화할 것으로 기대된다.

특히 자율주행 데이터는 국내 도로주행 영상뿐만 아니라, 주차 장애물·이동체 인지 영상, 버스 노선 주행 영상 등 국
내 도로 사정을 담은 다채로운 데이터를 제공하여, 국내 자율주행차의 기술 개발에 크게 기여할 것으로 예상된다.

아울러 분야별 전문가와 전문기관, 활용 기업 등은 대규모로 개방되는 인공지능 학습용 데이터의 지속적인 품질관리를 위해 힘을 모았다.

2020년 9월 출범한 ‘인공지능 학습용 데이터 품질자문위원회’와 ‘품질자문단’을 통해서다. 특히 인공지능 전문가로 구성된 품질자문단은 전문 컨설팅을 통해 향후 개방될 데이터들의 구축 계획 타당성, 단계별 품질 관리 절차, 원천 데이터와 라벨링 데이터의 품질·활용도 등을 지속적으로 관리하고 검증해 나갈 계획이다.


또한 지난해 ‘한국어’, ‘영상·이미지’ 등의 기반 기술 분야와 ‘헬스케어’, ‘교통·물류’, ‘재난·안전·환경’, ‘농축수산’ 등
의 전략 분야로 구축된 총 6대 분야 190종의 데이터가 올해 상반기에 인공지능 허브를 통해 개방될 예정이다.

’20년도 인공지능 학습용 데이터 구축·개방 현황 (170종)

구축된 데이터를 모아둔 인공지능 허브 또한 서비스 고도화를 위한 준비를 하고 있다. 자동차, 사람과 같은 객체 단위로 데이터를 검색하고 내려받는 기능을 추가하고 데이터 사용 목적별 정보를 제공하여 데이터의 활용도를 높일 계획이다.

정부의 디지털 뉴딜의 핵심인 데이터 댐 사업의 일환으로 추진되는 인공지능 학습용 데이터 구축 사업은 전 산업 분야의 디지털 전환을 가속화하는데 기여하고 있다. 디지털 뉴딜 정책 추진의 2년 차를 맞이한 시점에서 인공지능 학습용 데이터 활용 성과가 산업 곳곳에서 창출되고 있다.

이에 정부는 2025년까지 1,300여 종의 인공지능 학습용 데이터를 구축하는 것을 목표로 하며 "고품질의 인공지능 학습용 데이터를 지속적으로 제공해 누구나 데이터를 쉽게 활용하고, 성과를 공유할 수 있는 환경을 조성하는 데 지원을 아끼지 않겠다"라고 밝힌 바 있다.

향후 구축될 양질의 인공지능 학습용 데이터로 혁신적인 서비스가 창출되고 새로운 데이터가 모이면서 데이터 선순환 생태계가 마련되어 "댐의 물이 대지 곳곳으로 스며들어 꽃을 피우듯이, 이번에 공개되는 데이터들이 산업 곳곳에 널리 활용돼" 대한민국이 글로벌 시장에서 인공지능 선도국가가 되길 바란다.

김광우 기자

kimnoba@tech42.co.kr
기자의 다른 기사보기
저작권자 © Tech42 - Tech Journalism by AI 테크42 무단전재 및 재배포 금지

관련 기사

JP모건 "비트코인 과소평가돼… 적정가치는 3만8000달러"

최근 하락세에도 불구하고 암호화폐 시장에 대한 투자 여력은 상당 부분 존재하는 것으로 파악된다. JP모건은 암호화폐가 부동산의 대체 자산 중 하나이며, 적정가치가 현재가보다 약 28% 높은 3만8000달러 수준으로 평가했다.

몰로코 “애드테크는 데이터를 정제해 부가가치를 만들어 내는 비즈니스”

애드테크 기업들은 그간 점점 더 수집이 어려워지는 개인정보 데이터 대신 AI 머신러닝 기술을 적용해 각 기업이 확보한 데이터로 최대의 성과를 내는 솔루션을 선보이는가 하면 분산돼 있는 불특정 데이터 정보에서 맥락을 찾아 타깃팅하는 대안을 제시하고 있다. 미국 실리콘밸리에서 스타트업으로 시작해 자체 AI 솔루션을 기반으로 놀라운 성장을 거듭하고 있는 몰로코의 행보는 많은 주목을 받고 있다.

[디지털 헬스케어] 앱으로 진단하고 치료까지…대세는 디지털 치료제

최근 디지털 치료제가 주목받고 있다. 3세대 치료제라고도 불리는 디지털 치료제에는 모바일 앱이나 게임, 가상현실(VR), 인공지능(AI) 등 다양한 IT 기술이 활용된다. 미국에서는 리셋, 엔데버 등이 FDA 승인을 받고 사용되고 있으나 우리나라에서는 아직이다. 현재 뉴냅스, 라이프시맨틱스, 웰트, 에임메드, 하이 등 5곳이 확증임상 단계를 밟고 있다.

중국 오미크론 봉쇄에 애플 아이폰14 출시 연기설 '솔솔'

중국 오미크론 확산에 따른 도시 봉쇄로 아이폰14를 생산하는 중국 내 공장까지 타격을 입고 있다. 전체적인 생산일정은 유지하고 있지만, 일부 기종(아이폰14 맥스 등)은 실제로 생산일정 연기 현상이 발생하고 있다.